Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Robert T. Stibrany, Harvey J. Schugar and Joseph A. Potenza*

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA

Correspondence e-mail:
potenza@rutchem.rutgers.edu

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.046$
$w R$ factor $=0.110$
Data-to-parameter ratio $=6.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hydrogen bonding in $\mathbf{1 H}$-naphth[2,3-d]imidazole

The title compound, $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2}$, contains two essentially planar molecules (A and B) in the asymmetric unit. Molecules of type B exhibit $\pi-\pi$ stacking and form infinite zigzag chains along the a axis. A and B molecules are linked by $\mathrm{N}_{\text {amine }}-\mathrm{H} \cdots \mathrm{N}_{\mathrm{imine}}$ hydrogen bonds and form polymeric $-A-B-A-B-$ crisscrossed chains approximately along the [110] and [110] directions. The A molecules show little evidence of π stacking and, in addition to the hydrogen bonds, appear to be held in the crystal structure primarily by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The geometric parameters of molecules A and B agree well with each other and, where comparisons are appropriate, with those of a naphthimidazolium cation.

Comment

The title compound, (I), $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2}$, whose structure we report here, was prepared as a synthetic intermediate for part of a project designed to extend our exploration of the chemistry of bisimidazoles and bisbenzimidazoles to bisnaphthimidazoles. Previously, we have utilized species containing bisimidazoles as agents to study electron self-exchange (Knapp et al., 1990), whilst species containing bisbenzimidazoles have been shown to behave as catalysts (Patil et al., 2003; Stibrany et al., 2003; Stibrany, 2001), as geometrically constraining ligands (Stibrany et al., 2004) and as proton sponges (Stibrany et al., 2002).

(I)

(II)

The structure contains two approximately planar molecules of (I) in the asymmetric unit (Fig. 1). A search of the Cambridge Structural Database (Version 5.24; Allen, 2002) reveals only one entry, the salt 2-methylnaphthimidazolium chloride dihydrate, (II) (REFCODE GEYMAY; Zhan et al., 1988), for a species containing the naphthimidazole substructure. Consequently, the present structure appears to

Received 29 July 2004
Accepted 8 August 2004 Online 31 August 2004

Figure 1
View of molecules A and B in (I), showing 25% probability displacement ellipsoids and the atom-numbering scheme.

(IA)

(IB)

(II)

Figure 2
Bond distances (A) in molecules A and B of (I), and in (II).
provide the first example of a neutral naphthimidazole characterized structurally by X-ray diffraction techniques.

Metric parameters for the cation (II) and for the two unique molecules in (I), labeled A and B, respectively, for the molecules containing N11 and N21, compare favorably in general (Fig. 2); in particular, in all three molecules, the pattern of long and short $\mathrm{C}-\mathrm{C}$ distances is maintained. Variation in $\mathrm{C}-\mathrm{C}$ bond lengths of the magnitude reported here is consistent with

Projection, along the b axis, of the structure. B molecules are seen edgeon.
variations observed for a variety of polycyclic aromatic hydrocarbons (Li \& Jiang, 1995). As expected, the cation exhibits more nearly equal $\mathrm{C}-\mathrm{N}_{\mathrm{imine}}$ and $\mathrm{C}-\mathrm{N}_{\text {amine }}$ distances than do the neutral molecules, consistent with greater electron delocalization over the $\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{N}_{3}$ fragment in (II), resulting from protonation at the $\mathrm{N}_{\text {imine }}$ site.

In the crystal structure, molecules B of (I) are arranged with their planes approximately parallel to the c axis, while molecules A appear more nearly face on (Fig. 3); both A and B molecules related by a-glide plane symmetry operations form columns along the a axis. When viewed along the c axis (Fig. $4 a$), the B molecules appear as zigzag chains propagating in the a direction, within which a given molecule exhibits 17 unique interatomic contacts of between 3.445 (7) and 3.782 (7) \AA with its neighbors (Table 2), all within the range (3.3-3.8 Å; Janiak, 2000) generally accepted to indicate $\pi-\pi$ interactions. A view of a portion of the zigzag chain, showing the ring overlap explicitly, is given in Fig. 4(b). Molecules A and B are linked by strong $\mathrm{N}_{\text {amine }}-\mathrm{H} \cdots \mathrm{N}_{\text {imine }}$ hydrogen bonds (Table 1) to form polymeric $-A-B-A-B-$ criss-crossed chains parallel to the [110] and [110] directions (Fig. 5). In contrast to molecules B, molecules A show little, if any, evidence of π stacking and, in addition to the hydrogen bonds, appear to be held in the crystal structure primarily by C $\mathrm{H} \cdots \pi$ interactions with adjacent A - and B-type molecules. Different parameters have been used in the literature to describe $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving aromatic rings (Desiraju \& Steiner, 1999). For Table 3, we have used one of these, the $\mathrm{H} \cdots \mathrm{C}$ distances in the $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}_{\text {aromatic }}$ fragments, with a cutoff of $3.25 \AA$, to summarize these interactions in the present structure.

Experimental

The title compound was prepared by following a published procedure (Fries et al., 1935). Crystals were obtained by slow evaporation of a concentrated solution of (I) in dry dimethyl sulfoxide (m.p. 519 K , decomposed).

(a)

(b)
Figure 4
(a) View, approximately along the c axis, showing the zigzag chains of molecules B. Molecules A are not shown. (b) View of three B molecules, approximately normal to the molecular planes, showing the pattern of ring overlap of the B molecules.

Figure 5
View, along the c axis, of the imidazole fragments of (I).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2}$	$D_{x}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=168.19$	Mo $K \alpha$ radiation
Monoclinic, $I a$	Cell parameters from 730
$a=9.4503(6) \AA$	reflections
$b=16.3882(8) \AA$	$\theta=2.3-20.8^{\circ}$
$c=11.4770(9) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$\beta=110.502(4)^{\circ}$	$T=295(2) \mathrm{K}$
$V=1664.90(19) \AA^{3}$	Plate, pale yellow
$Z=8$	$0.47 \times 0.22 \times 0.02 \mathrm{~mm}$

$D_{x}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 730
-
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295$ (2) K
$0.47 \times 0.22 \times 0.02 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Blessing, 1995)
$T_{\min }=0.778, T_{\max }=1.00$
5846 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.110$
$S=1.00$
1480 reflections
243 parameters

1480 independent reflections
1145 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-11 \rightarrow 10$
$k=-19 \rightarrow 19$
$l=-13 \rightarrow 13$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0653 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.14 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.13$ e \AA^{-3}

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N11-H11 $\cdots \mathrm{N} 23^{\mathrm{i}}$	$0.83(5)$	$2.12(5)$	$2.888(5)$	$155(5)$
N21-H21 $\cdots \mathrm{N} 13$	$0.85(5)$	$2.13(5)$	$2.919(5)$	$154(5)$

Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}+z$.

Table 2
Interatomic $\mathrm{N} \cdots \mathrm{C}$ and $\mathrm{C} \cdots \mathrm{C}$ distances (\AA) for molecules of type B, which lie within the range generally accepted for $\pi-\pi$ interactions.

$\mathrm{N} 21 \cdots \mathrm{C} 25^{\mathrm{ii}}$	$3.562(6)$	$\mathrm{C} 22 \cdots \mathrm{C} 26 a^{\mathrm{ii}}$	$3.596(7)$
$\mathrm{N} 21 \cdots \mathrm{C} 26^{\mathrm{ii}}$	$3.515(6)$	$\mathrm{C} 22 \cdots \mathrm{C} 27^{\mathrm{ii}}$	$3.673(7)$
$\mathrm{N} 21 \cdots \mathrm{C} 27^{\mathrm{ii}}$	$3.734(7)$	$\mathrm{C} 23 \cdots \mathrm{C} 25 a^{\mathrm{ii}}$	$3.714(7)$
$\mathrm{N} 23 \cdots \mathrm{C} 26^{\mathrm{ii}}$	$3.752(6)$	$\mathrm{C} 23 \cdots \mathrm{C} 25 b^{\mathrm{ii}}$	$3.618(7)$
$\mathrm{N} 23 \cdots \mathrm{C} 26 a^{\mathrm{ii}}$	$3.445(7)$	$\mathrm{C} 23 \cdots \mathrm{C} 26 b^{\mathrm{ii}}$	$3.659(7)$
$\mathrm{N} 23 \cdots \mathrm{C} 26 b^{\mathrm{ii}}$	$3.637(6)$	$\mathrm{C} 24 \cdots \mathrm{C} 25 b^{\mathrm{ii}}$	$3.523(8)$
$\mathrm{C} 21 \cdots \mathrm{C} 25^{\mathrm{ii}}$	$3.486(6)$	$\mathrm{C} 27 \cdots \mathrm{C} 25^{\mathrm{ii}}$	$3.782(7)$
$\mathrm{C} 21 \cdots \mathrm{C} 25 a^{\mathrm{ii}}$	$3.588(6)$	$\mathrm{C} 27 \cdots \mathrm{C} 25 a^{\mathrm{ii}}$	$3.655(7)$
$\mathrm{C} 22 \cdots \mathrm{C} 26^{\mathrm{ii}}$	$3.465(7)$		

Symmetry code: (ii) $x+\frac{1}{2},-y, z$.

Table 3
Interatomic $\mathrm{C} \cdots \mathrm{H}$ distances less than $3.25 \AA$ between an A molecule and its nearest neighbors.

C11..H24	3.10^{i}	C15a \cdots H25a	$2.95{ }^{\text {vii }}$
$\mathrm{C} 11 \cdots \mathrm{H} 25 b$	$2.94{ }^{\text {ii }}$	C15b \cdots H25a	$2.75{ }^{\text {vii }}$
C11 $\cdots \mathrm{H} 16 a$	$3.24{ }^{\text {iii }}$	C16...H27	$3.20{ }^{\text {viii }}$
C12 $\cdots \mathrm{H} 15 b$	$3.12{ }^{\text {iv }}$	C16a \cdots H25a	$3.06{ }^{\text {vii }}$
C12...H17	$3.04{ }^{\text {iii }}$	C16a \cdots H26a	$3.15{ }^{\text {ix }}$
C12 \cdots H26b	3.22^{v}	C16a . ${ }^{\text {H27 }}$	$2.95{ }^{\text {ix }}$
C13 . ${ }^{\text {H }}$ 15a	$3.04{ }^{\text {vi }}$	C16b \cdots H25a	$2.81{ }^{\text {vii }}$
C13 . . $\mathrm{H} 16 a$	$2.90{ }^{\text {iii }}$	C16b \cdots H26a	$3.15{ }^{\text {ix }}$
C13 $\cdots \mathrm{H} 25 b$	$3.20{ }^{\text {ii }}$	C17...H24	$3.15{ }^{\text {i }}$
C14 \cdots H15a	$3.22^{\text {vi }}$	C17... H 25 b	$3.20{ }^{\text {ii }}$
C15 . ${ }^{\text {H25a }}$	$3.23{ }^{\text {vii }}$	C17 \cdots H26b	$3.16{ }^{\text {ii }}$
C15an ${ }^{\text {H2 }}$	$3.10{ }^{\text {viii }}$		

Symmetry codes: (i) $x+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x+1, y, z+1$; (iii) $x,-y+\frac{1}{2},-\frac{1}{2}+z$; (iv) $x+1, y, z ;$ (v) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (vi) $x+\frac{1}{2},-y, z$; (vii) $x+\frac{1}{2},-y, z+1$; (viii) $x-\frac{1}{2},-y, z$; (ix) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

The structure was originally refined in space group $C c$, with $\beta=$ 116.801 (4) ${ }^{\circ}$, but was converted to $I a$ to reduce correlation among x and z-related parameters. The $\mathrm{N}_{\text {amine }} \mathrm{H}$ atoms, which are involved in hydrogen bonding, were refined isotropically; the remaining H atoms
were positioned geometrically and treated as riding, with $\operatorname{Csp}{ }^{2}-\mathrm{H}$ distances set to $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of anomalous dispersion effects, Friedel pairs were merged.

Data collection: SMART-WNT/2000 (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2000). SHELXTL (Version 6.10), SAINT-Plus (Version 6.02) and SMART-WNT/2000 (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond, IUCr Monographs on Crystallography, No. 9, p. 131. Oxford University Press.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fries, K., Walter, R. \& Schilling, K. (1935). Anal. Chem. 516, 248285.

Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. \& Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452-3464.

Li, S. \& Jiang, Y. (1995). J. Am. Chem. Soc. 117, 8401-8406.
Patil, A. O., Zushma, S., Stibrany, R. T., Rucker, S. P. \& Wheeler, L. M. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 2095-2106.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stibrany, R. T. (2001). US Patent 6180788.
Stibrany, R. T., Lobanov, M. V., Schugar, H. J. \& Potenza, J. A. (2004). Inorg. Chem. 43, 1472-1480.
Stibrany, R. T., Schugar, H. J. \& Potenza, J. A. (2002). Acta Cryst. E58, o1142o1144.
Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. \& Sissano, J. A. (2003). Macromolecules, 36, 85848586.

Zhan, Y., Luo, Y., Barton, R. J. \& Robertson, B. E. (1988). Acta Cryst. C44, 1049-1051.

