organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Robert T. Stibrany, Harvey J. Schugar and Joseph A. Potenza*

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA

Correspondence e-mail: potenza@rutchem.rutgers.edu

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.007 Å R factor = 0.046 wR factor = 0.110 Data-to-parameter ratio = 6.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hydrogen bonding in 1H-naphth[2,3-d]imidazole

The title compound, $C_{11}H_8N_2$, contains two essentially planar molecules (A and B) in the asymmetric unit. Molecules of type B exhibit π - π stacking and form infinite zigzag chains along the a axis. A and B molecules are linked by N_{amine} -H··· N_{imine} hydrogen bonds and form polymeric -A-B-A-B- crisscrossed chains approximately along the [110] and [$\overline{1}10$] directions. The A molecules show little evidence of π stacking and, in addition to the hydrogen bonds, appear to be held in the crystal structure primarily by C-H··· π interactions. The geometric parameters of molecules A and B agree well with each other and, where comparisons are appropriate, with those of a naphthimidazolium cation.

Comment

The title compound, (I), $C_{11}H_8N_2$, whose structure we report here, was prepared as a synthetic intermediate for part of a project designed to extend our exploration of the chemistry of bisimidazoles and bisbenzimidazoles to bisnaphthimidazoles. Previously, we have utilized species containing bisimidazoles as agents to study electron self-exchange (Knapp *et al.*, 1990), whilst species containing bisbenzimidazoles have been shown to behave as catalysts (Patil *et al.*, 2003; Stibrany *et al.*, 2003; Stibrany, 2001), as geometrically constraining ligands (Stibrany *et al.*, 2004) and as proton sponges (Stibrany *et al.*, 2002).

The structure contains two approximately planar molecules of (I) in the asymmetric unit (Fig. 1). A search of the Cambridge Structural Database (Version 5.24; Allen, 2002) reveals only one entry, the salt 2-methylnaphthimidazolium chloride dihydrate, (II) (REFCODE GEYMAY; Zhan *et al.*, 1988), for a species containing the naphthimidazole substructure. Consequently, the present structure appears to

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 29 July 2004

Accepted 8 August 2004

Online 31 August 2004

Figure 1

View of molecules A and B in (I), showing 25% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Bond distances (Å) in molecules A and B of (I), and in (II).

provide the first example of a neutral naphthimidazole characterized structurally by X-ray diffraction techniques.

Metric parameters for the cation (II) and for the two unique molecules in (I), labeled A and B, respectively, for the molecules containing N11 and N21, compare favorably in general (Fig. 2); in particular, in all three molecules, the pattern of long and short C-C distances is maintained. Variation in C-C bond lengths of the magnitude reported here is consistent with

Projection, along the b axis, of the structure. B molecules are seen edge-on.

variations observed for a variety of polycyclic aromatic hydrocarbons (Li & Jiang, 1995). As expected, the cation exhibits more nearly equal $C-N_{imine}$ and $C-N_{amine}$ distances than do the neutral molecules, consistent with greater electron delocalization over the $N_1-C_2-N_3$ fragment in (II), resulting from protonation at the N_{imine} site.

In the crystal structure, molecules B of (I) are arranged with their planes approximately parallel to the c axis, while molecules A appear more nearly face on (Fig. 3); both A and B molecules related by a-glide plane symmetry operations form columns along the a axis. When viewed along the c axis (Fig. 4a), the B molecules appear as zigzag chains propagating in the *a* direction, within which a given molecule exhibits 17 unique interatomic contacts of between 3.445 (7) and 3.782 (7) A with its neighbors (Table 2), all within the range (3.3–3.8 Å; Janiak, 2000) generally accepted to indicate π – π interactions. A view of a portion of the zigzag chain, showing the ring overlap explicitly, is given in Fig. 4(b). Molecules A and B are linked by strong $N_{amine} - H \cdot \cdot \cdot N_{imine}$ hydrogen bonds (Table 1) to form polymeric -A-B-A-B- criss-crossed chains parallel to the [110] and $\overline{[110]}$ directions (Fig. 5). In contrast to molecules B, molecules A show little, if any, evidence of π stacking and, in addition to the hydrogen bonds, appear to be held in the crystal structure primarily by C-H··· π interactions with adjacent A- and B-type molecules. Different parameters have been used in the literature to describe $C-H\cdots\pi$ interactions involving aromatic rings (Desiraju & Steiner, 1999). For Table 3, we have used one of these, the H $\cdot \cdot \cdot C$ distances in the C-H $\cdot \cdot \cdot C_{aromatic}$ fragments, with a cutoff of 3.25 Å, to summarize these interactions in the present structure.

Experimental

The title compound was prepared by following a published procedure (Fries *et al.*, 1935). Crystals were obtained by slow evaporation of a concentrated solution of (I) in dry dimethyl sulfoxide (m.p. 519 K, decomposed).

Figure 4

(a) View, approximately along the c axis, showing the zigzag chains of molecules B. Molecules A are not shown. (b) View of three B molecules, approximately normal to the molecular planes, showing the pattern of ring overlap of the B molecules.

Figure 5

View, along the c axis, of the imidazole fragments of (I).

Crystal data

$C_{11}H_8N_2$	$D_{\rm r} = 1.342 {\rm Mg m}^{-3}$
$M_r = 168.19$	Mo $K\alpha$ radiation
Monoclinic, Ia	Cell parameters from 730
a = 9.4503 (6) Å	reflections
$b = 16.3882 \ (8) \ \text{\AA}$	$\theta = 2.3 - 20.8^{\circ}$
c = 11.4770 (9) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 110.502 \ (4)^{\circ}$	T = 295 (2) K
$V = 1664.90 (19) \text{ Å}^3$	Plate, pale yellow
Z = 8	$0.47 \times 0.22 \times 0.02 \text{ mm}$

Data collection

Bruker SMART APEX CCD area- detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Blessing, 1995) $T_{min} = 0.778, T_{max} = 1.00$ 5846 measured reflections <i>Refinement</i>	1480 independent reflections 1145 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 25.1^{\circ}$ $h = -11 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -13 \rightarrow 13$
Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
$R[F^2>2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0653P)^2]$
$wR(F^2) = 0.110$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{max} < 0.001$
1480 reflections	$\Delta\rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
243 parameters	$\Delta\rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N11-H11···N23 ⁱ	0.83 (5)	2.12 (5)	2.888 (5)	155 (5)
N21-H21···N13	0.85 (5)	2.13 (5)	2.919 (5)	154 (5)

Symmetry code: (i) $\frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} + z$.

Table 2

Interatomic N···C and C···C distances (Å) for molecules of type *B*, which lie within the range generally accepted for π - π interactions.

N21···C25 ⁱⁱ	3.562 (6)	C22···C26a ⁱⁱ	3.596 (7)
N21···C26 ⁱⁱ	3.515 (6)	$C22 \cdot \cdot \cdot C27^{ii}$	3.673 (7)
N21···C27 ⁱⁱ	3.734 (7)	$C23 \cdot \cdot \cdot C25a^{ii}$	3.714 (7)
N23···C26 ⁱⁱ	3.752 (6)	$C23 \cdot \cdot \cdot C25b^{ii}$	3.618 (7)
N23···C26a ⁱⁱ	3.445 (7)	$C23 \cdot \cdot \cdot C26b^{ii}$	3.659 (7)
N23···C26b ⁱⁱ	3.637 (6)	$C24 \cdot \cdot \cdot C25b^{ii}$	3.523 (8)
C21···C25 ⁱⁱ	3.486 (6)	$C27 \cdot \cdot \cdot C25^{ii}$	3.782 (7)
$C21 \cdot \cdot \cdot C25a^{ii}$	3.588 (6)	$C27 \cdot \cdot \cdot C25a^{ii}$	3.655 (7)
C22···C26 ⁱⁱ	3.465 (7)		

Symmetry code: (ii) $x + \frac{1}{2}, -y, z$.

Table 3

Interatomic C···H distances less than 3.25 Å between an A molecule and its nearest neighbors.

C11···H24	3.10 ⁱ	C15aH25a	2.95 ^{vii}
C11···H25b	2.94 ⁱⁱ	C15bH25a	2.75 ^{vii}
C11···H16a	3.24 ⁱⁱⁱ	C16· · ·H27	3.20 ^{viii}
$C12 \cdot \cdot \cdot H15b$	3.12 ^{iv}	C16aH25a	3.06 ^{vii}
$C12 \cdot \cdot \cdot H17$	3.04 ⁱⁱⁱ	C16aH26a	3.15 ^{ix}
$C12 \cdot \cdot \cdot H26b$	3.22 ^v	C16a···H27	2.95 ^{ix}
C13···H15a	3.04^{vi}	C16bH25a	2.81 ^{vii}
C13···H16a	2.90 ⁱⁱⁱ	C16bH26a	3.15 ^{ix}
$C13 \cdot \cdot \cdot H25b$	3.20 ⁱⁱ	C17· · ·H24	3.15 ⁱ
C14···H15a	3.22^{vi}	C17···H25b	3.20 ⁱⁱ
C15···H25a	3.23 ^{vii}	C17···H26b	3.16 ⁱⁱ
C15a···H22	3.10 ^{viii}		

Symmetry codes: (i) $x + \frac{1}{2}$, $y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) x + 1, y, z + 1; (iii) x, $-y + \frac{1}{2}$, $-\frac{1}{2} + z$; (iv) x + 1, y, z; (v) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (vi) $x + \frac{1}{2}$, -y, z; (vii) $x + \frac{1}{2}$, -y, z + 1; (viii) $x - \frac{1}{2}$, -y, z; (ix) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$;

The structure was originally refined in space group *Cc*, with $\beta = 116.801 \ (4)^{\circ}$, but was converted to *Ia* to reduce correlation among *x*-and *z*-related parameters. The N_{amine} H atoms, which are involved in hydrogen bonding, were refined isotropically; the remaining H atoms

were positioned geometrically and treated as riding, with Csp^2 -H distances set to 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. In the absence of anomalous dispersion effects, Friedel pairs were merged.

Data collection: *SMART-WNT*/2000 (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2000); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-32* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* (Bruker, 2000).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (2000). *SHELXTL* (Version 6.10), *SAINT-Plus* (Version 6.02) and *SMART-WNT*/2000 (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, IUCr Monographs on Crystallography, No. 9, p. 131. Oxford University Press. Formula L. L. (1907). J. Appl. Cryst. 20, 565
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fries, K., Walter, R. & Schilling, K. (1935). Anal. Chem. 516, 248-285.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452–3464.
- Li, S. & Jiang, Y. (1995). J. Am. Chem. Soc. 117, 8401–8406.
- Patil, A. O., Zushma, S., Stibrany, R. T., Rucker, S. P. & Wheeler, L. M. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 2095–2106.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stibrany, R. T. (2001). US Patent 6 180 788.
- Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472–1480.
- Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142-01144.
- Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). *Macromolecules*, 36, 8584– 8586.
- Zhan, Y., Luo, Y., Barton, R. J. & Robertson, B. E. (1988). Acta Cryst. C44, 1049–1051.